75 research outputs found

    Signaling equilibria for dynamic LQG games with asymmetric information

    Full text link
    We consider a finite horizon dynamic game with two players who observe their types privately and take actions, which are publicly observed. Players' types evolve as independent, controlled linear Gaussian processes and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with asymmetric information. We show that under certain conditions, players' strategies that are linear in their private types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is shown that this is a signaling equilibrium due to the fact that future beliefs on players' types are affected by the equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance matrices depend on equilibrium strategies

    Mechanism Design for Fair Allocation

    Full text link
    Mechanism design for a social utility being the sum of agents' utilities (SoU) is a well-studied problem. There are, however, a number of problems of theoretical and practical interest where a designer may have a different objective than maximization of the SoU. One motivation for this is the desire for more equitable allocation of resources among agents. A second, more subtle, motivation is the fact that a fairer allocation indirectly implies less variation in taxes which can be desirable in a situation where (implicit) individual agent budgetary constraints make payment of large taxes unrealistic. In this paper we study a family of social utilities that provide fair allocation (with SoU being subsumed as an extreme case) and derive conditions under which Bayesian and Dominant strategy implementation is possible. Furthermore, it is shown how a simple modification of the above mechanism can guarantee full Bayesian implementation. Through a numerical example it is shown that the proposed method can result in significant gains both in allocation fairness and tax reduction

    Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels

    Full text link
    We introduce a new family of concatenated codes with an outer low-density parity-check (LDPC) code and an inner low-density generator matrix (LDGM) code, and prove that these codes can achieve capacity under any memoryless binary-input output-symmetric (MBIOS) channel using maximum-likelihood (ML) decoding with bounded graphical complexity, i.e., the number of edges per information bit in their graphical representation is bounded. In particular, we also show that these codes can achieve capacity on the binary erasure channel (BEC) under belief propagation (BP) decoding with bounded decoding complexity per information bit per iteration for all erasure probabilities in (0, 1). By deriving and analyzing the average weight distribution (AWD) and the corresponding asymptotic growth rate of these codes with a rate-1 inner LDGM code, we also show that these codes achieve the Gilbert-Varshamov bound with asymptotically high probability. This result can be attributed to the presence of the inner rate-1 LDGM code, which is demonstrated to help eliminate high weight codewords in the LDPC code while maintaining a vanishingly small amount of low weight codewords.Comment: 17 pages, 2 figures. This paper is to be presented in the 43rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, Sept. 28-30, 200
    • …
    corecore